

AFRL-IF-RS-TR-2003-57
Final Technical Report
March 2003

DNA TAG-ANTITAGS (TAT) CODES

State University of New York @ Geneseo

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-57 has been reviewed and is approved for publication.

APPROVED:
 TOM RENZ

Project Engineer

 FOR THE DIRECTOR:
JAMES A. COLLINS, Acting Chief
Information Technology Division

 Information Directorate

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
MARCH 2003

3. REPORT TYPE AND DATES COVERED
Final Sep 02 – Feb 03

4. TITLE AND SUBTITLE
DNA TAG-ANTITAGS (TAT) CODES

6. AUTHOR(S)
Anthony J. Macula

5. FUNDING NUMBERS
C - F30602-02-2-0205
PE - 61102F
PR - DNAT
TA - AT
WU - 02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
State University of New York Geneseo
The Research Foundation
1 College Circle
Geneseo New York 14454

8. PERFORMING ORGANIZATION
 REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Air Force Research Laboratory/IFTC
26 Electronic Parkway
Rome New York 13441-4514

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-57

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: Tom Renz/IFTC/(315) 330-3423

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)
This research addresses the initial stages of the development of an enabling technology for DNA computing and other
biological assay applications. This work combines mathematics, computer science and chemistry. It is focused on the
construction of a biomolecular architecture designed to employ new algorithmic paradigms based on the massively
parallel computational power of DNA hybridization. The ultimate intent is to develop a computing basis to eventually
overcome the exponential time complexity of many discrete math problems so that they can be solved in linear real
time. Many of these computationally hard (NP) problems are critical to logistics, scheduling and security. In particular,
we made an initial application of biomolecular computing methods to data mining. Data mining has important
applications to information security, assurance and superiority.
In this research, we developed methods of generating large collections of single stranded DNA sequences called a DNA
(n,d)code. DNA(n,d) codes serve as universal components for biomolecular computing. DNA(n,d) codes are closed
under reverse-complementation. The strands in a DNA(n,d) code have such binding specificity that a code strand will
only hybridize with its reverse-complement and will not cross hybridize with any other code strand in the DNA(n,d) code.
Such collections of strands are crucial to the success of DNA computing.

15. NUMBER OF PAGES
23

14. SUBJECT TERMS
Biomolecular Computing, DNA Sequencing, Information Optimization

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

i

Table of Contents

1. Summary .. 1
2. Introduction... 3
3. Methods, Assumptions, Procedures... 6

3.1 Insertion-Deletion Codes .. 6
3.2 DNA(n,d) Codes ... 8

4. Results, Discussion .. 9
4.1 DNA(n,d) Code Generation Programs.. 9

5. Conclusions... 11
5.1 DNA Computing with DNA(n,d) Codes .. 11
5.2 DNA Computing and Data Mining... 14

6. References... 16

List of Figures

FIGURE 1 .. 2
FIGURE 2 Intended Duplex .. 4
FIGURE 3 Unintended Duplex.. 5
FIGURE 4 ... 10
FIGURE 5 Encoding of the Sequence 1000101 .. 12
FIGURE 6 Correct DNA Bit String... 13
FIGURE 7 Incorrect DNA Bit String .. 13
FIGURE 8 DNA Bit String Interactions.. 14
FIGURE 9 ... 14
FIGURE 10 Patterns in Data are Being Transformed Into Molecules ... 16

List of Tables

TABLE 1 An example of a DNA(8,3) partition ... 9
TABLE 2 Using the uniform distribution method, we could only generate DNA(15,5) code of

size 14 ... 11

1

1. Summary

This research addresses the initial stages of the development of an enabling technology for DNA

computing and other biological assay applications. This work combines mathematics, computer science

and chemistry. It is focused on the construction of a biomolecular architecture designed to employ new

algorithmic paradigms based on the massively parallel computational power of DNA hybridization. The

ultimate intent is to develop a computing basis to eventually overcome the exponential time complexity of

many discrete math problems so that they can be solved in linear real time. Many of these

computationally hard (NP) problems are critical to logistics, scheduling and security. In particular, we

made an initial application of biomolecular computing methods to the identification of important patterns

in data, i.e., data mining. Data mining has important applications to information security, assurance and

superiority.

In this research, we developed methods of generating large collections of single stranded DNA

sequences called a DNA(n,d) code. DNA(n,d) codes serve as universal components for biomolecular

computing. DNA(n,d) codes are closed under reverse-complementation. The strands in a DNA(n,d) code

have such binding specificity that a code strand will only hybridize with its reverse-complement and will

not cross hybridize with any other code strand in the DNA(n,d) code. Such collections of strands are

crucial to the success of Adleman [1] style DNA computing [4], [15], [24]. The collections also have

important applications in many other biological assays. Some of the other applications are single

nucleotide polymorphism (SNP) genotyping [9], gene expression profiling [5], DNA chip development

[11], [22], [37], and self-assembly [41].

In this proposal, we think of the strand design problem as a mathematical coding theory problem

and we use the insertion-deletion metric as our constraint. This approach has been previously suggested

[2], [33]. It was initially implemented in [9] with excellent binding specificity. We have dramatically

improved the initial research in [9].

Two codewords x and y are at insertion-deletion distance at least d+1 if and only if their longest

common subsequence has length at most n-d-1. This means that if up to d deletions (of sequence entries)

are made in any codeword x, the resulting (and shorter) q-ary sequence could not have been obtained by

deleting up to d entries in any other codeword y with y ≠ x . Since two 3’-5’ DNA sequences x, y of

length n can form s bonds in a duplex only if x and the complement of y have a common subsequence of

length s the insertion-deletion metric is the only metric that can model this cross-hybridization bonding

constraint

2

We wrote programs that generate very good random and pseudo-random DNA(n,d) (IDq (n,d))

codes. On a 2.3 ghtz Pentium PC, we generated a DNA(20,5) code of size 3038. This is a ten-fold

increase other previously published constructions. The reason for this improvement stems from the

Markov chain approach we used to generate candidate code words.

 Given two n-sequences x, y, all of our programs use a "folklore" dynamic programming

algorithm to find the longest common subsequence (lcs(x,y)) between x and y. Our very first program

used a (reverse-)complement cyclic code as an initial set from which to find a DNA(n,d) code as a

subcode. However, we eventually realized that cyclic codes have too much symmetry to generate large-

size DNA subcodes. The next step was based on generating uniformly distributed independent random n-

sequences, the volumes of the spheres of a fixed radius centered at many of these n-sequences is too large.

We did not get the desired performance here. Our most recent programs generate candidate n-sequences x

in the following way. The value of x1 is selected from {a,c,g,t} with uniform probability. Then, the

remaining entries are generated by a stationary Markov chain given by transition matrix M k with

parameter k. Then, the remaining entries are generated by a stationary Markov chain given by transition

matrix M k with parameter k.

 a c g t

M k =

a

c

g

t

k−3
k

k −1 k−1 k−1

k−1 k−3
k

k−1 k−1

k−1 k −1 k−3
k

k−1

k−1 k −1 k−1 k−3
k

FIGURE 1

 These sequences have low volume spheres of the desired radius. However, the higher the k, the

fewer the number of sequences generated. Our programs take a dynamic heuristic approach. These

programs start a high value of k and then check all values of the permitted length of the longest common

subsequence. This continues for a set number of cycles over which no new codeword is added. The next

value of k is set by finding the next highest value of k for which a codeword can be added to the growing

code. Here dichotomy is used. This heuristic has worked very well and is much better than the uniform

codeword generation method. For example, by using our Markov chain heuristic, we can generate

DNA(15,5) code of size 104. Using the uniform distribution method, we could only generate DNA(15,5)

code of size 14.

3

Our DNA(n,d) codes can be applied to biomolecular computing as described in [6]. Note that

because of the properties of our DNA(n,d) code, we need only half as many distinct strands as were used

in [6]. We show that a DNA(n,d) code can be used to encode and filter. In [6], a strand either encodes or

filters exclusively. We have applied this approach to the data mining problem of the identification of

maximal frequent sets. In short, using a DNA(n,d) code as universal components, an assembly process

creates single stranded DNA molecules called DNA bit strings that store and retrieve information.

For a given database, a library of DNA bit strings is past through (algorithmically constructed)

filters. Then the DNA bit strings that remain represent maximal frequent sets in the database.

2. Introduction

In [1], [6], [17], [26] it has been shown that the hybridization that occurs between a DNA strand

and its Watson-Crick complement can be used to perform mathematical computation. The promise of

DNA computing is that the massive parallelism of DNA hybridization reactions can be exploited to

overcome the time complexity (via a silicon based computer) of an important class discrete mathematical

problems so that they can be solved in real time. However, to achieve the full potential of DNA

computing, many technological hurdles need to be overcome. This work addresses this issue.

In this research large collections of single stranded DNA sequences called a DNA(n,d) code are

developed. DNA(n,d) codes are closed under reverse-complementation. The strands in a DNA(n,d) code

have such binding specificity that a code strand will only hybridize with its reverse-complement and will

not cross hybridize with any other code strand in the DNA(n,d) code. Such collections of strands are

crucial to the success of Adleman [1] style DNA computing [4], [15], [24]. The collections also have

important applications in many other biological assays [3], [4], [5], [8], [9], [11], [22], [37], [41].

Single strands of DNA are modeled by directed sequences of letters from the alphabet {A, C, G,

T} where A, T and C, G are called complementary pairs. Two oppositely directed DNA sequences are

capable of coalescing into a duplex. Because an A (C) in one strand can only bind to a T (G) in the

oppositely directed strand, the greatest energy of duplex formation is obtained when the two sequences

are reverse-complements (a.k.a. Watson-Crick complements) of one another. This annealing process is

referred to as DNA hybridization. For example, given the strand 3'GTATTGAT5' (directed 3' to 5'), the

oppositely directed (5' to 3') strand 5'ATCAATAC3' is the reverse complement. Henceforth, the terms

complement and reverse-complement are synonymous. See FIGURE 2. Since molecules can turn over in

solution, our pictures are intended to capture this. Because we are accustom to working with the bottom

strand of a duplex, the numbering of our sequences is 3'-5' rather than the more customary 5'-3'.

4

FIGURE 2

Hybridization assays offer the possibility of simultaneously processing trillions of bits of

information. In DNA hybridization assays for biomolecular computing, DNA strands can be used for

multiple purposes. They can be used to store, write, read and retrieve information. Hybridization assays

with DNA strands are also used to separate, manipulate, identify and address molecules in many other

important experiments beyond biomolecular computing [3], [4], [5], [8], [9], [11], [22], [37], [41].

In DNA computing hybridization assays, each strand in the assay must hybridize much more

strongly to its complement strand than to any other strand or any other complement strand. In such assays,

DNA strands are synthesized and "labeled" or "fixed" DNA probes are allowed to hybridize with the

synthesized DNA strands in a controlled and algorithmic way. The resulting hybridized and "labeled" or

"fixed" DNA molecules contain information (i.e., solutions to problems) that can in turn be "read" by

further hybridization reactions or other means. An example of this type of paradigm is the sticker method

[33].

The advantage of this method is that it uses universal components that can be mass produced. We

call the collection of universal components a DNA(n,d) code. See Definition 2. The main problem with

this basic method is that unintended cross-hybridization is a main source of errors.

Thus the problem is to avoid the formation of unintended duplexes in a DNA(n,d) code. In

FIGURE 3, we give some examples of how this could happen. In FIGURE 3, the pairs (R, L) and (r, l) are

complements. The only intended duplexes are R:L and r:l. Base pairing can (possibly) occur between the

red bases in the unintended duplexes listed in FIGURE 3. The other unintended duplexes not shown in

FIGURE 3 are R:l, R:R, L:L, l:L and l:l.

3’ G T A T T G A T 5’ 3’ A T C A A T A C 5’
strand complement

3’ G T A T T G A T 5’

strand:complement
 intended duplex

5

FIGURE 3

To deal with the problem of unintended duplexes, each intended duplex should be much more

energetically stable than any possible unintended duplex.

In this way, if the hybridization assays are conducted at a temperature above a certain threshold,

then only intended duplexes can form. The main open question is how to best mathematically model this

strand design problem.

The design problem for a DNA(n,d) code presents a trade-off. In order to maximize the amount

of information that can be stored or processed in parallel, it is desirable to have as many strands as

possible. On the other hand, if too many strands are used, similar strands will entail cross-hybridization,

reducing the accuracy of the assay. Thus the DNA(n,d) code must be constructed to adhere to some

constraints

This research improved known constructions of DNA(n,d) codes and demonstrated how to use

them as universal components in DNA based computing.

3’ G T A T T G A T 5’

R = 3’ G T A T T G A T 5’ L = 3’ A T C A A T A C 5’

r = 3’ t t c c a a g g 5’ l = 3’ c c t t g g a a 5’

3’ t t c c a a g g 5’

strands
corresponding
complements

unintended duplex r:R unintended duplex r:L

unintended duplex r:r
3’ t t c c a a g g 5’

6

3. Methods, Assumptions, Procedures

3.1 Insertion-Deletion Codes

In this work we think of the strand design problem as a mathematical coding theory problem and

we use the insertion-deletion metric as our constraint.

 While other "metric" constraints have been applied to this problem [7], the insertion-deletion

metric is the only one that models constraining the absolute maximum number of possible cross-

hybridized (i.e., bad) base pairings. Also the insertion-deletion is the only metric that can be adapted to

constraining the absolute maximum number of possible cross-hybridized (i.e., bad) hydrogen bounds.

All lower-case Roman variables represent non-negative integers. [n] denotes the set

{1, 2, ..., n}. A q-ary n-sequence x =(xi) is sequence of length n with entries xi ∈{0,...,q −1} for each

1 ≤ i ≤ n. For applications to our strand design problem we have q = 4.

Definition 1. Given two q-ary n-sequences x and y, lcs(x,y) is the maximum length of all subsequences

common to both x and y. The insertion-deletion (or Levenshtien) metric is denoted by ρ(x,y) where

ρ(x,y) = n − lcs(x,y). A collection C of q-ary n-sequences is called an IDq (n,d)code, if for any

x, y ∈C , we have that ρ(x,y) ≥ d + 1. Let idq (n,d)be the maximum size of an IDq (n,d) code.

Two codewords x and y are at insertion-deletion distance at least d+1 if and only if their longest

common subsequence has length at most n-d-1. This means that if up to d deletions (of sequence entries)

are made in any codeword x, the resulting (and shorter) q-ary sequence could not have been obtained by

deleting up to d entries in any other codeword y with y ≠ x . For this reason IDq (n,d) codes can be

thought of as d-deletion correcting codes1. See Example 1.

Example 1. Consider the 4-ary sequences x, y of length 8 with x = 31011301 and y = 22113300. Then

ρ(x,y) = 4 because lcs(x,y) = 4. A common subsequence of length four is indicated by red entries.

1 Actually such a code can correct any combination of up to d deletions and\or insertions. Hence the name insertion-
deletion metric.

7

Note that by starting with x and deleting the blue entries, we have the common sequence 1130. Then by

inserting the entries 2, 2, 3, 0 in the appropriate places, we obtain y.

There are a couple of basic formulas that form the basis for the theory of ID(n,d) codes. Let x be

a q-ary n-sequence. Let Dt (x) be the set of all q-ary (n-t)-sequences that can be obtained from x by t

deletions. Let I t (x) be the set of all q-ary (n+t)-sequences that can be obtained from x by t insertions.

Let Vt (x) be the set of all codewords with insertion-deletion distance at most t from x. Vt (x) is the

insertion-deletion sphere of radius t and centered at x. Let r(x) be the number of runs of x. A run is a

maximum interval of x that consists of the same symbol, e.g., 111211000033 has five runs. From [20],

[23], [24], we have that: r(x)− t
i()

i=0

t

∑ ≤ Dt (x) ≤ r (x)+t −1
t

 and | It (x) |= n+ t
i()(q−1)i

i=0

t

∑ .

These equations give information about bounds for IDq (n,d) code. Suppose we have an

IDq (n,d) code C. Then for x, y ∈C , there is no common subsequence of length n-d. Hence Dd (x)

and Dd (y) are disjoint. Therefore Dd (x)
x∈C
∑ ≤ qn−d . Known upper bounds are essentially derived

from this observation. Asymptotic lower bounds have been obtained by standard random coding methods

based on an ensemble generated by the uniform distribution for q-ary n-sequences [24]. What makes

IDq (n,d) (and DNA(n,d) codes below) difficult to analyze can be observed by the following. Since

lcs(x,y) ≥ n − t if and only if y can be obtained from x by t deletions followed by t insertions, it follows

that

Vt (x) = I t (z)
z∈Dt (x)
U .

This indicates the fact that there are spheres of the same radius but different volumes. From the

above observation about insertion-deletion spheres, good codes should have codewords x with Vt (x) of

smaller volume. This requires codewords x with fewer runs. One way to create such codewords is to use

a stationary Markov Chain.

In comparison to the plethora of codes for the Hamming metric, there are a few known

constructions of non-random IDq (n,d) codes and almost all are for IDq (n,1) codes. See [19], [25], [36],

[40], [42]. One non-random method that we have discovered (and have applied in some of our programs

described in Section 4) can be explained as follows. Given an IDq (n,d) code C of size N an

IDq (nk, kd + k −1) code C(k) of size N can be obtained by replacing every n-sequence in C with the nk-

sequence achieved by repeating each entry k times. For example if k = 3, then 0112033 would be replaced

by 000111111222000333333.

8

The reason for choosing the insertion-deletion metric for strand design is that two 3’-5’ DNA

sequences x, y of length n can form s bonds in a duplex only if x and the complement of y have a

common subsequence of length s. No other metric constraint has this property.

This is exhibited in Figure 3. The unintended duplex r:R can form four base pairings because l

has the subsequence ttga and R has the exact same subsequence TTGA. Recall that l is the complement

of r. Note these sequences are not necessarily contiguous. For example, the subsequence ttga of l is not

contiguous. With this in mind, we have the following definition.

3.2 DNA(n,d) Codes

Definition 2 [15] A DNA(n,d) code is a collection of DNA strands (3’-5’) of length n that satisfy the

following constraints:

1. The complement of every strand in the collection is also in the collection (i.e., the code is closed under

complementation.)

2. No strand is equal to its complement.

3. The longest common subsequence between any two strands in the collection is at most n-d-1.

Ideally, strands from an DNA(n,d) code form n bonds with their complement strands in the

formation of intended hybridized duplexes, while at most n-d-1 bonds occur in any unintended cross-

hybridized duplexes. Thus if d is large enough and the reactions are carried out at a temperature that

exceeds the n-d-1 bonding threshold, but is below the n bonding threshold, then cross-hybridization will

be essentially eliminated.

If we set 0 = A, 1 = T, 2 = C, and 3 = G, then DNA(n,d) codes are a subclass of ID4 (n,d) codes

because an ID4 (n,d) only satisfies condition 3 of a DNA(n,d) code. The reasons for conditions 1 and 2

can be observed in FIGURES 6-9, and are discussed Section 5. Using this numeric-letter identification,

the reverse complement of a 4-ary sequence is defined exactly as the Watson-Crick complement. Using

this definition, an ID4 (n,d) that also satisfies condition 1 of a DNA(n,d) is called a RC(n, d) code.

Asymptotic lower bounds have been established for RC(n,d) codes have been obtained. Let

rc(n,d) be the maximum size of a RC(n,d) code. Clearly rc(n,d) ≤ id4(n,d). Then as n → ∞ we have

rc(n,d) ≥ (d!)2 q
(q−1)2

d
q n

n 2d (1 + ο(1)). (1)

9

As was the case for IDq (n,d) codes, this lower bound by was achieved by standard random

coding arguments based on an ensemble of codewords generated by using the uniform distribution of the

q-ary symbols.

Let C be a DNA(n,d) of size 2N. We can partition C into two halves, each half free of the

complement of any other strand in the given half. Let R(C) ={r1, ...,rN} denote one of these halves and

let L(C) = {l1, ...,lN} (where ri is the complement of li) denote the other half. An example of a

DNA(8,3) partition in this way is given below in TABLE 1. Note, for any x, y in this DNA(8,3) we have

lcs(x,y) = 4. In TABLE 1 all sequences are given 3'-5'.

In applications the subsets R(C) and L(C) have complementary functions. For example, the

strands in R(C) can function as molecular tags or sites to write on a molecule while the strands in L(C)

can function as probes, extractors or site blockers. In Section 5, we describe how the strands in a

DNA(n,d) code can be used to construct a biomolecular computing architecture. In that architecture, each

R(C) and L(C) each have two distinct functions at different points in the procedure. At one point of the

procedure, ri is used to write "1" and li is used to write "0." At another point, ri is used to read "0" and

li is used to read "1." In FIGURES 6-9, we also indicate why the insertion-deletion distance needs to be

obtained for codewords between and inside each of the halves.

 R(C) L(C)

r1= aattttaa r7= atgcgttg l1= ttaaaatt l7 = caacgcat

r2 = taaccccg r8= cccccccc l2 = cggggtta l8= gggggggg

r3= ttccaagg r9= aaaaaaaa l3= ccttggaa l9 = tttttttt

r4 = ggccaatt r10 = ggtttccc l4 = aattggcc l10= gggaaacc

r5= gctacggg r11= cccctttt l5 = cccgtagc l11= aaaagggg

r6= gtattgat r12 = ttttgggg l6 = atcaatac l12= cccctttt

TABLE 1

4. Results, Discussion

4.1 DNA(n,d) Code Generation Programs

We have programs that generate very good random and pseudo-random DNA(n,d) (IDq (n,d))

codes. One reason that we believe we can construct better bounds for IDq (n,d) and DNA(n,d) codes

with a Markov chain approach stems from the great improvement that we achieved by using a Markov

10

chain to generate codewords for our randomly constructed codes. In [9], a random ID(20,5) of size 1024

was generated by a using a uniform distribution. This code was pruned to a DNA(20,5) code of size 16

by experimental and computational methods.

On a 2.3 ghtz Pentium PC, we generated a DNA(20,5) code of size 3038!

 Given two n-sequences x, y, all of our programs use a "folklore" dynamic programming

algorithm to find the lcs(x,y) . This is essentially described in [10]. The complexity of this subroutine is

O(n2) . In [10], an improvement of the "folklore" algorithm is given and we plan to incorporate this in

our future programs.

 Our very first program used a (reverse-)complement cyclic code as an initial set from which to

find a DNA(n,d) code as a subcode. However, we eventually realized that cyclic codes have too much

symmetry to generate large-size DNA subcodes.

 The next step was based on generating uniformly distributed independent random n-sequences,

but from the discussion in Section 4, one can understand that the volumes of the spheres of a fixed radius

centered at many of these n-sequences is too large. We did not get the desired performance here.

 Our most recent programs generate candidate n-sequences x in the following way. The value of

x1 is selected from {a,c,g,t} with uniform probability. Then, the remaining entries are generated by a

stationary Markov chain given by transition matrix M k with parameter k.
 a c g t

M k =

a

c

g

t

k−3
k

k −1 k−1 k−1

k−1 k−3
k

k−1 k−1

k−1 k −1 k−3
k

k−1

k−1 k −1 k−1 k−3
k

FIGURE 4

 The average number2 of runs in the codewords of this ensemble is 3n
k

. Thus higher values of k

give sequences with fewer runs. These sequences have low volume spheres of the desired radius.

2 (q −1)k

n
 for q ≠4 .

11

However, the higher the k, the fewer the number of sequences generated. At present, our programs take a

dynamic heuristic approach. These programs start a high value of k and then check all values of the

permitted length of the longest common subsequence. This continues for a set number of cycles over

which no new codeword is added. The next value of k is set by finding the next highest value of k for

which a codeword can be added to the growing code. Here dichotomy is used. This heuristic has worked

very well and is much better than the uniform codeword generation method. For example, by using our

Markov chain heuristic, we can generate DNA(15,5) code of size 104. This code is exhibited in TABLE

2 (only R(C) is given, L(C) follows.) Using the uniform distribution method, we could only generate

DNA(15,5) code of size 14.

 R(C)

ccccccccccccccc aaccccggattttta cctttaaggatttcc tttgggccccagcct

ttttttttttttttt ttggggaaaaacccc cttttcccgtaactc aagtaaggtagcagg

aaaaaaggggggggc ttttggaaaaatttt ggtttcccttcggtt gccgtgggctggaac

gggcccttaaaaaaa ggggaaaaaggttgg ttccaaaattaaacc tctgcaaacaagcag

ttttttccccggggg ggaatttggggttcc aaagggggctttacg gtcctttgtcgcctg

ggggggaaatttttt ttcggggggcccggg aaacaactttgggca tgcctcccgcgattg

aaaaaaaaccctttt ccaaaaaccccgaaa ttagtttgaagcttg acaatcgtatcccga

tttacccccccaaaa cataattttggccgg gggtggattcaagca attactggctggcat

aaaggggcccccccc acccctttaacctgg cccattcggccaaca agaattccatacctt

cccccctttggggcc acaaaaaaggtcaat acaggccagtccggg ttggtcgtctttcac

tttaaaaaaaaaggg cgggccagggtttaa ttccaaggggtccaa gacgacccgataggt

aaagggccggaaaat cccccaaaaggccct ggactttagtcaatt tttgatgggactacg

aatcccccccagggt gttccgttttaaaat cgtcggttaggcccc gagcggtcggtactt

TABLE 2

5. Conclusions

5.1 DNA Computing with DNA(n,d) Codes

To give an example of how DNA(n,d) codes can be applied to biomolecular computing, we

discuss algorithm and architecture in [6]. In [6] a total of 80 distinct strands (40 library encoding, 40

filtering) were used to solve a 20 variable SAT problem. We show that a DNA(n,d) of size can be used to

12

encode and filter. In [6], a strand either encodes or filters exclusively. Note, there are other architectures

that can be constructed using DNA(n,d) codes ,e.g., the variants of the sticker method [33].

Note that because of the (assumed) properties of our DNA(n,d) code, we need only half as many

distinct strands as were used in [6].

A DNA bit string of length N is a DNA molecule (single long strand) that consists of N distinct

non-overlapping substrands X1,X2,...,X N and N-1 identical DNA molecules S that are located between

any two consecutive X i,Xi+1in the DNA bit string3. Suppose we have a DNA(n,d) code C of size 2N

partitioned into R(C) and L(C). A Lipton encoding [26] can be used to construct a DNA library of 2N

distinct DNA bit strings X1SX2S...X n−1SXn were X i = ri or X i = li for ri ∈R(C), li ∈L(C). If we

think of ri = 1and li = 0 , then we have a library of DNA molecules that encode all binary sequences of

length N. Using a subcode {r1, ...,r7}∪ {l1, ..., l7} of the above DNA(8,3) code in TABLE 1, the encoding

of the sequence 1000101 is given in FIGURE 5.

FIGURE 5

As indicated above, we identify DNA bit strings and binary sequences. For I ⊆ [N] and (ei)i∈I a

binary sequence, let K be the following a subset of binary N-sequences defined as

K = {(bi) : bi = ei for some i ∈I}. K is the set of all binary sequences that satisfy the disjunctive

clause K' over N Boolean terms, each of which is a variable xi (if ei =1) or its negation ~ xi (if ei = 0 .)

The main "computing" idea in [6] is an iteration of the following: Given a subset T of DNA bit strings

and a set K defined above, the subset T ∩ K can be extracted from the set T by hybridization. See

Example 2.

Example 2. Suppose T is the set of all 27 DNA bits stings formed by using our DNA(8,3) subcode of

size 14 given above. Suppose K1 = {(bi) : b1 = 1 or b3 = 0 or b4 =1 or b5 = 0} and

K 2 ={(bi) : b2 = 1 or b3 = 1 or b7 = 0}. If we use the DNA bit string representation, then

K1 = {(bi) : b1 = r1 or b3 = l3 or b4 = r4 or b5 = l5} and K 2 ={(bi) : b2 = r2 or b3 = r3 or b7 = l7}.

3 To improve performance a strands of synthetic bases (e.g., iso-G) could be used as separator sequences.

3’ aattttaa S cggggtta S ccttggaa S aattggcc S gctacggg S atcaatac S atgcgttg 5’

13

Two corresponding "filters" F1and F2 are constructed. F1 consists of the probe strands l1 ,r3 , l4 ,r5

affixed to a gel. Note that these are the complement stands to those that appear in K1. Thus F1 could be

called the complement filter of K1. Similarly, F2 consists of the strands l2 , l3, r7 affixed to a gel.

When T is passed through F1, only the strands in K1 hybridize with the probes affixed in F1 and remain

in the gel. The strands that pass through the filter F1 are discarded. The strands that remain in the F1 gel

are exactly T ∩ K1 . These strands can be "washed" from the filter F1 and recovered. Then these

recovered strands are passed through filter F2 . Only the strands in T ∩ K1 and in K 2 hybridize with

probes in F2 . What passes through is discarded. The strands that remain in the F2 gel are exactly

T ∩ K1 ∩ K2 . Thus the strands T ∩ K1 ∩ K2 in the F2 gel are all binary sequences that satisfy the

conjunction K1 ∧ K2of the clauses K1 and K2 .

Given the above descriptions, the general SAT problem can be thought of as: Given disjunctive

clauses K1 , K2,..., Kp , then is

Ki
i=1

p

I ≠ ∅ ? By constructing the corresponding complement filters

F1 , F2,..., Fp and iterating the above process, the answer is "yes" if and only if there are any strands in

Fp .

All of the above analysis is contingent on avoiding all of the possible cross-hybridization

situations that a DNA(n,d) code intends to avoid. We now give some examples of potential cross-

hybridizations. For the filter to work, we need correct reads. See FIGURE 6.

FIGURE 6

Incorrect reads are avoided by ensuring that codewords inside of L(C) (R(C)) have the proper

insertion-deletion distance. In FIGURE 7, only four base pairings can form in a "bad read." Here c5 is

FIGURE 7

3’ aattttaa S cggggtta S ccttggaa S aattggcc S gctacggg S atcaatac S a tg cg ttg 5’
incorrect read

incorrect DNA bit string is affixed

correct read
3’ aattttaa S cggggtta S ccttggaa S aattggcc Sgctacggg S atcaatac S atgcgttg 5’

a correct DNA bit string is affixed

14

"incorrectly reading" r7. Four bonds can form because lcs(r5,r7) = 4 . The common subsequence

between r5= gctacgg and r7=atgcgttg is tcgg.

Inter-DNA bit string interactions are prevented by ensuring that the insertion-deletion distance

inside of R(C) (L(C)) or between R(C) and L(C) is sufficient. In top pair in FIGURE 8, only four bonds

can form between the two strands at the indicated positions because lcs(l2,r5) = 4 . The common

subsequence between l2 = cggggtta and r5= gctacggg" in Figure 8 is gggg. Similarly ensuring the proper

insertion-deletion distance prevents intra-DNA (hairpin) interactions. See FIGURE 9.

 FIGURE 8

 FIGURE 9

5.2 DNA Computing and Data Mining

We now discuss a problem that is of particular interest to us. Let [2N] denote the power set of

[N]. Suppose we have DNA(n,d) code C of size 2N partitioned into R(C) and L(C).

3’ xxx S xxx S xxx S xxx S xxx S xxx S atgcgttg 5’

DNA bit string interactions

These DNA bit strings could be prevented from being affixed

3’ xxx S taaccccg S xxx S xxx S xxx S xxx S xxx 5’

aattttaa

15

Problem 1. Let P1, P2, ..., Pm be fixed subsets of [N].

a. Find all S ⊂ [N] with S ⊄ Pi for all i with 1 ≤ i ≤ m .

b. Find all T ⊂ [N] with Pi ⊄ T for all i with 1 ≤ i ≤ m .

Both of these problems are related and are simplified forms of the general SAT problem. They

can be solved by the method described above. (These are simplifications because no negations appear in

the clauses.)

There is one important difference. In the SAT problem, only one solution needs to be found. Here

all solutions are required.

 Let (b i) be a binary n-sequence. As above, let K i = {(bj) : bj = 1 for some j ∉Pi}. Clearly all

S ⊄ Pi for all i with 1 ≤ i ≤ m is the set of all S with incidence vector in

Ki
i=1

m

I . In the DNA bit string

representation, Ki = {(bj) : bj = rj for some j∉Pi}. The associated filter Fi consists of {lj : j ∉Pi} . If

a set S of DNA bit strings of length N is passed through Fi , then only the bit strings in K i remain in the

gel of Fi . Starting with all possible DNA bit strings and iterating the filter process outlined above m

times, we arrive at Fm . Fm contains all the DNA bit string representations of the solutions to Problem 1a.

Problem 1b can transformed into Problem 1a because Pi ⊄ T if and only if [N] − T ⊄ [N] − Pi .

The most straightforward application of the above problem is in the identification of independent

sets in a graph (or hypergraph). In Problem 1b, if one takes all the edges of a simple graph G as the

collection {Pi} , then the set of all T is the collection of independent sets in G.

Problem 1a can be applied to the identification of maximal frequent sets in a data base [12], [18],

[27], [28], [29], [30]. The reason that this is of interest to us is because the identification of the maximal

frequent sets is the main computational bottleneck in the data mining of association rules.

The relationship between data mining and Problem 1 is this. If the sets {Pi} are selected properly,

the subsets S will be candidates for maximal frequent sets. See [12], [18], [27], [28], [29], [30] and

Section 12 here. The application of DNA computing is to apply to Problem 1 an algorithm like that

described in Section 7.

16

FIGURE 10

The relationship between data mining and Problem 1 is this. If the sets {Pi} are selected properly

the subsets S will be candidates for maximal frequent sets. See [12], [18], [27], [28], [29], [30]. The

application of DNA computing is to apply an algorithm like that described in Section 7 to Problem 1.

Then the resulting collection of DNA library strands that remain in the final filter will code for

maximal frequent sets. What is envisioned is that patterns in data are being transformed into molecules.

See FIGURE 10. If we can read the molecules, then that we have found the patterns..

6. References

1. Adleman, L., Molecular computation of solutions to combinatorial problems, Science} 266, 1021-
1024, (1994).

2. Baum, E. DNA sequences useful for computation, DIMACS Series in Discrete Mathematics and

Theoretical Computer Science, 44, 235-242, (1999).

Electronic

Database
--->

Electronic Queries

P1 P2 , ..., Pm
yes no yes

DNA
bitstrings

 Filter 1
 ON

Filter 2
 OFF

Filter m
 ON---> --> --> -->

MOLECULAR

PATTERNS

MOLECULAR

READS
Electronic
Patterns

non patterns
 dumped

non patterns
 dumped

/ I I

17

3. BenDor, A., Karp, R., Schwikowski, B., and Yakhani, Z., Universal DNA tag systems: A
combinatorial scheme, J. Comp. Biol., 7, 503-519, (2000).

4. Brenner, S. Methods for sorting polynucleotides using oligonucleotide tags, U.S. Patent No.

5,604,097, 1997

5. Brenner, S. et al., Gene expression analysis by massively parallel signature sequencing (MPSS) on

microbead arrarys, Nat. Biotechnol., 18, 630-634 (2000).

6. Braich, R., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L. Solution of a 20-Variable

3-SAT Problem on a DNA Computer. Sciencexpress, 1-15, (2002).

7. Brenneman, A. and Condon, A. Strand Design for biomolecular computation, Theoretical Computer

Science, 287, 39-58, (2002).

8. Breslauer, K., R. Frank, H. Blocker, and L.A. Markey, Predicting Duplex DNA Stability from the

Base Sequence, PNAS 83, 3746-3750, (1986).

9. Cai, H., P. White, D. Torney, A. Deshpande, Z. Wang, B. Marrone, and J. Nolan, Flow Cytometry-

Based Minisequencing: A New Platform for High Throughput Single Nucleotide Polymorphism
Scoring, Genomics, 66, 135-143, (2000).

10. Crochemore, M., Iliopoulos, C., Pinzon, Y., and Reid, J., A fast and practical bit-vector algorithm for

the longest common subsequence, Information Processing Letters, 80, 279-285, (2001).

11. Delgado, A, DNA chips as look up tables for rule based systems, Computing and Control Engineering

Journal, 113-119, June (2002).

12. Dyachkov, A., A. Macula, P. Vilenkin and D. Torney On families of subsets where the intersection of

l subsets are not covered by the union of s others, , J. Combinatorial Th. Ser. A, to appear

13. D'yachkov, A., and D. Torney, On Similarity Codes, IEEE Trans. on Information Theory}, 46, 1558-

1564, (2000).

14. D'yachkov, A., D. Torney, P. Vilenkin, and P. White, On a Class of Codes for Insertion-Deletion

Metric, 2002 IEEE International Symposium on Information Theory, Lausanne, Switzerland, (2002).

15. D'yachkov, A., D. Torney, P. Vilenkin, and P. White, Reverse-Complement Similarity Codes, IEEE

Trans. on Information Theory submitted.

16. Erdos, P.L., D. Torney, and P. Sziklai, A Finite Word Poset, Elec. J. of Combinatorics, 8, (2001).

17. Faulhammer, D., Cukras, A., Lipton, R., and Landweber, L., Molecular computation, RNA solutions

to chess problems, PNAS, 97, no.4, 1385-1389, (2000).

18. Flodman , P., A. Macula, A. Spence and D. Torney , A new data mining technique for the analysis of

simulated genetic data, Proceedings of Genetic Analysis Workshop 12, Wiley-Liss, (2001).

19. G. Tenengolts, Nonbinary codes correcting single deletion or insertion, IEEE Trans. Inform. Theory,

30, 766-769, (1984).

18

20. Hirschberg, D., Bound on the number of string subsequences, in Proc. 10th Symp. on Combinatorial

Pattern Matching, Warwick UK , Lecture Notes in Computer Science, Springer-Verlag, Berlin,
(1999).

21. Hollman, H., A relation between Levenshtein-type distances and insertion and deletion correcting

capabilities of codes, IEEE Trans. on Information Theory, 39 1424-1427, (1993).

22. Kaderali, L, Selecting Target Specific Probes for DNA Arrays, Master's Thesis, Informatics, U. Koln,

(2001).

23. Levenshtein, V., Binary Codes Capable of Correcting Deletions, Insertions, and Reversals, Soviet

Phys.--Doklady, 10 707-710, (1966).

24. Levenshtein, V., Bounds for Deletion-Insertion Correcting Codes, 2002 IEEE International

Symposium on Information Theory, Lausanne, Switzerland, (2002).

25. Levenshtein, V., Elements of Coding Theory, in the book: Discrete Mathematics and Mathematical

Problems of Cybernetics, Moscow, Nauka, pp.207-305, (1974) (in Russian).

26. Lipton, R., DNA solution of hard computational Problems, Science, 268, 542-545,

27. Macula, A., A Combinatorial Profiling Model for Intrusion Detection and Analysis, IEEE

Conference on Information Assurance and Security, West Point, NY, 47-52, (2000)

28. Macula, A., and L. Popyack, A group testing method for finding patterns in data, with L. Popyack,

Proc. SIAM 2002 Conference on Data Mining and Discrete Mathematics, to appear

29. Macula, A., and Rykov, Two-stage group testing for complexes using almost disjunct matrices,

Discrete Applied Math, to appear

30. Macula, A., D. Torney and P. Vilenkin, Two stage group testing for complexes in the presence of

errors, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 55, p 145-158,
(2000).

31. Marathe, A., A. Condon, and R. Corn, On combinatorial word design, DIMACS Series in Discrete

Mathematics and Theoretical Computer Science, 54, 75-89, (2000).

32. Needleman, S., and C.D. Wunsch, A General Method Applicable to the Search for Similarities in the

Amino-Acid Sequences of Two Proteins, J. Mol. Biol. 48, 443-453 (1970).

33. Roweis, S., Winfree, E., Burgoyne, R., Chelyapov, N.V., Goodman, M.F., Rothemund, P.W.K.,

Adleman, L.M. A Sticker Based Model for DNA Computation. DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, 44, 1-29, (1999).

34. Rykov, V., A. Macula, C. Korzelius, D. Englehart, D. Torney, and P. White, DNA Sequences

Constructed on the Basis of Quaternary Cyclic Codes, Proceedings of the 4th World Multiconference
on Systematics, Cybernetics, and Informatics, SCI 2000/ISAS2000, Orlando, Florida, July 2000.

19

35. Sakamoto, K., H, Gouzu, K. Komiya, D. Kiga, S. Yokoyama, T. Yokomori, and M. Hagiya,
Molecular Computation by DNA Hairpin Formation, Science, 288, 1223-1226, (2000).

36. Sloane, N., On Single-Deletion-Correcting Codes, IEEE Trans. Inform. Theory, (2002).

37. Solas, D., C. Pease, E. Sullivan, M. Cronin, C. Holmes, and S. Fodor, Oligonucleotide arrays for

rapid DNA sequence analysis, PNAS, 91, 5022-5026, (1994).

38. Smith, T. and M. Waterman, Identification of Common Molecular Subsequences, J. Mol. Biol, 147,

195-197 (1981).

39. Ullman, J., On the capabilities of codes to correct synchronization errors, IEEE IT , 13, 95-105

(1967).

40. Varusamov, R., and G. Tenengol'ts, One asymmetrical error correction codes, Avtomatika I

Telemekhanika, 26, 288-292, (1965) (in Russian).

41. Winfree, E., F. Lui, L. Wenzler, N. Seeman, Design and self-assembly of 2D DNA cystrals, Nature

394, 539-544, (1998).

42. Yin, J., Directed Designs and Perfect Deletion-Correcting Codes, Designs, Codes, and Cryptography,

99-110, (2000).

